Dynamics of epileptiform activity in mouse hippocampal slices
نویسندگان
چکیده
منابع مشابه
Dynamics of epileptiform activity in mouse hippocampal slices
Increase of the extracellular K( + ) concentration mediates seizure-like synchronized activities in vitro and was proposed to be one of the main factors underlying epileptogenesis in some types of seizures in vivo. While underlying biophysical mechanisms clearly involve cell depolarization and overall increase in excitability, it remains unknown what qualitative changes of the spatio-temporal n...
متن کاملElectric field suppression of epileptiform activity in hippocampal slices.
1. The effects of relatively small external DC electric fields on synchronous activity in CA1 and CA3 from transverse and longitudinal type hippocampal slices were studied. 2. To record neuronal activity during significant field changes, differential DC amplification was employed with a reference electrode aligned along an isopotential with the recording electrode. 3. Suppression of epileptifor...
متن کاملDexmedetomidine inhibits epileptiform activity in rat hippocampal slices
Purpose: Our study aimed to investigate the effects of dexmedetomidine on basal synaptic transmission in the rat hippocampus. We also examined dexmedetomidine in an animal epilepsy model, with further investigation into the role of specific antagonists on the alpha-2 adrenoceptors and the imidazoline receptors. Methods: All of the experiments used the CA1 region of hippocampal brain slices prep...
متن کاملSomatostatin receptors differentially affect spontaneous epileptiform activity in mouse hippocampal slices.
Somatostatin-14 [somatotropin release-inhibiting factor (SRIF)] reduces hippocampal epileptiform activity but the contribution of its specific receptors (sst1-5) is poorly understood. We have focused on the role of sst1 and sst2 in mediating SRIF modulation of epilepsy using hippocampal slices of wild-type (WT) and sst1 or sst2 knockout (KO) mice. Recordings of epileptiform discharge induced by...
متن کاملSuppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices.
1. Sinusoidal high frequency (20-50 Hz) electric fields induced across rat hippocampal slices were found to suppress zero-Ca2+, low-Ca2+, picrotoxin, and high-K+ epileptiform activity for the duration of the stimulus and for up to several minutes following the stimulus. 2. Suppression of spontaneous activity by high frequency stimulation was found to be frequency (< 500 Hz) but not orientation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Physics
سال: 2011
ISSN: 0092-0606,1573-0689
DOI: 10.1007/s10867-011-9216-x